Two-Step Synthesis of the Immunogenic Bacterial Glycolipid BbGL1

Suvarn S. Kulkarni and Jacquelyn Gervay-Hague*

*University of California, Davis, Department of Chemistry, One Shields A*V*enue, Da*V*is, California 95616*

*ger*V*ay@chem.ucda*V*is.edu*

Received August 4, 2008

ABSTRACT

Chemical synthesis of a bacterial glycolipid BbGL1 is reported in two steps starting from per-*O***-TMS D-galactose. The key features are glycosyl iodide mediated -stereoselective glycosylation in the absence of neighboring group participation and regioselective acylation.**

In 2001, two major glycolipids were isolated from *Borrelia burgdorferi*, the causative agent of Lyme disease, which is a multisystemic disorder affecting the skin, nervous system, heart, and joints. $¹$ These glycolipids were initially character-</sup> ized as galactosyl diacyl glycerol. Two years later, the structures of these highly immunoreactive glycolipids were corrected as cholesteryl 6 - O -acyl- β - D -galactopyranoside (BbGL1) **¹** and 1,2-di-*O*-acyl-3-*O*-R-D-galactopyranosyl-*sn*glycerol (BbGL2) **2** (Figure 1). The major fatty acids were palmitate and oleate.2 Little is known about the protective antigens or the host factors of *B. burgdorferi*. Glycolipids **1** and **2**, being the only antigenic lipid components of *B. burgdorferi*, are looked upon as valuable candidates for diagnosis and potential vaccines against Lyme disease.³ Moreover, BbGL1 is thought to be involved in developing host immunity during Lyme disease.⁴ Chemical synthesis offers an opportunity to obtain large quantities of these structurally well-defined glycolipids in high purity for immunological studies.

In the past few years, we have demonstrated the utility of glycosyl iodides in the synthesis of α -*O*-glycosides.⁵ Re-

(3) Pozsgay, V.; Kubler-Kielb, J. *Carbohydr. Res.* **2007**, *342*, 621–626. (4) Schröder, N. W. J.; Schombel, U.; Heine, H.; Göbel, U. B.; Zähringer, U.; Shumann, R. R. *J. Biol. Chem.* **2003**, 33645–33653.

10.1021/ol801780c CCC: \$40.75 2008 American Chemical Society **Published on Web 09/18/2008**

cently, we developed a highly efficient one-pot protocol for the synthesis of α -linked glycolipids including BbGL2 and its analogs.6 A short and general strategy to access *C*-analogs of BbGL2 was also established.⁷ A chemoenzymatic synthesis of BbGL1 was published recently; and the first chemical synthesis of BbGL1 was achieved by Pozsgay and co-workers.8,9 Their approach relied upon neighboring group participation of a C-2 pivaloyl ester to install the β -cholesteryl linkage and required a number of selective protections to arrive at the final target. In continuation with our work on *Borrelia* glycolipids, herein, we wish to report a concise chemical synthesis of BbGL1 using glycosyl iodides.

Retrosynthetically, the synthesis of the target molecule requires a β -selective glycosidation and regioselective acylation of the C-6 hydroxyl. As noted above, β -selective glycosidation is achieved using neighboring group participa-

⁽¹⁾ Hossain, H.; Wellensiek, H.-J.; Geyer, R.; Lochnit, G. *Biochimie* **2001**, *83*, 683–692.

⁽²⁾ Ben-Menachem, G.; Kubler-Kielb, J.; Coxon, B.; Yergey, A.; Schneerson, R. *Proc. Natl. Acad. Sci. U.S.A.* **2003**, *100*, 7913–7918.

^{(5) (}a) Hadd, M. J.; Gervay, J. *Carbohydr. Res.* **1999**, *320*, 61–69. (b) Lam, S. N.; Gervay-Hague, J. *Carbohydr. Res.* **2002**, *337*, 1953–1965. (c) Lam, S. N.; Gervay-Hague, J. *Org. Lett.* **2002**, *4*, 2039–2042. (d) Du, W.; Gervay-Hague, J. *Org. Lett.* **2005**, *7*, 2063–2065.

⁽⁶⁾ Du, W.; Kulkarni, S. S.; Gervay-Hague, J. *Chem. Commun.* **2007**, 2336–2338.

⁽⁷⁾ Kulkarni, S. S.; Gervay-Hague, J. *Org. Lett.* **2006**, *8*, 5765–5768. (8) (a) Wu, D.; Xing, G.-W.; Poles, M. A.; Horowitz, A.; Kinjo, Y.; Sullivan, B.; Bodmer-Narkevitch, V.; Plattenberg, O.; Kronenberg, M.; Tsuji, M.; Ho, D. D.; Wong, C.-H. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 1351– 1356.

⁽⁹⁾ Pozsgay, V.; Kubler-Kielb, J.; Coxon, B.; Ekborg, G. *Tetrahedron* **2005**, *61*, 10470–10481.

tion of an ester type group at $C2^{10}$ or by using participating solvent such as acetonitrile.¹¹ However, orthoester formation in the former and imidate formation in the latter are often side reactions. Also the nitrile effect is sensitive to steric constraints in the donor and acceptor pair.¹² Very recently, a β -selective glucosidation procedure was reported for thioglucosyl donors bearing 2,3,4-tri-*O*-TIPS groups and a 6-*O*-Piv group employing a conformational switching strategy.13 Bols and co-workers presented a comprehensive and intriguing study on the conformational change of "superarmed donors" equipped with TBS and TIPS groups.¹⁴ Unfortunately, these conditions are not suitable for galactosyl counterparts, which generate only α -isomers under the conditions. Thus, a β -selective galactosidation protocol is highly warranted.

We hypothesized that owing to the highly reactive nature of per-*O*-TMS galactosyl iodide 4, β -selectivity could be achieved via direct S_N2 type displacement of an anomeric α -iodide in the presence of a suitable activator (Scheme 1).

Upon glycosidation, the TMS groups could then be removed in the same pot under mild conditions to obtain the fully deprotected cholesteryl glycoside (CG) **6**, which could then be acylated at the primary position, regioselectively. Per-*O*-TMS galactoside **3** in turn could be generated quantitatively from D-galactose and used as such without any purification.¹⁵

To test our hypothesis, we first tried α -stereoselective glycosidation reactions (Scheme 2) using per-*O*-TMS

galactose **3** and cholesterol under in situ anomerization conditions.¹⁶ We expected α -glycosidation to be highly efficient and felt it would be helpful to have the α -anomer for analysis of β -glycosidation reactions.⁵⁻⁷ Accordingly, compound **3** (3 equiv) was treated with a stoichiometric amount of TMSI at $0 °C$ in CH₂Cl₂. Upon complete disappearance of the starting material, as indicated by TLC (25 min), the formed glycosyl iodide solution was directly cannulated into a solution of cholesterol (1 equiv), 4 Å molecular sieves, DIPEA, and TBAI (3 equiv) and stirred for two days at ambient temperature. The solvent was evaporated. TBAI was precipitated and filtered using hexane/ ethyl acetate, and the crude product was treated with Dowex 50WX8-200 in MeOH for 2 h. Column chromatography afforded exclusively the α -cholesteryl glycoside in 85% yield along with recovery of starting material to the extent of 15%.

We next turned our attention toward achieving β -selectivity required for the natural product. Paulsen and others have reported β -selective glycosidation in ap-

⁽¹⁰⁾ Nukada, T.; Berces, A.; Zgierski, M. Z.; Whitfield, D. M. *J. Am. Chem. Soc.* **1998**, *120*, 13291–13295.

⁽¹¹⁾ Bracinni, I.; Derouet, C.; Esnault, J.; Herve´ du Penhoat, C.; Mallet, J. M.; Michon, V.; Sinay¨, P. *Carbohydr. Res.* **1993**, *246*, 23–41.

^{(12) (}a) Yamada, H.; Nishizava, M. *Tetrahedron Lett.* **1987**, *28*, 4315– 4318. (b) Yu, B.; Tao, H. *Tetrahedron Lett.* **2001**, *42*, 2405–2407.

⁽¹³⁾ Okada, Y.; Mukae, T.; Okajima, K.; Taira, M.; Fujita, M.; Yamada, H. *Org. Lett.* **2007**, *9*, 1573–1576.

⁽¹⁴⁾ Pederson, C. M.; Nordstrø´m, L. U.; Bols, M. *J. Am. Chem. Soc.* **2007**, *129*, 9222–9235.

⁽¹⁵⁾ Bhat, A. S.; Gervay-Hague, J. *Org. Lett.* **2001**, *3*, 2081–2084.

⁽¹⁶⁾ Kulkarni, S. S.; Gervay-Hague, J. *Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance*; Demchenko, A. V., Eds.; Wiley-VCH, 2008; pp 59-93.

Table 1. β -Glycosidations of Galactosyl Iodide with Cholesterol

propriately matched systems using heterogeneous catalysis such as Ag_2CO_3 ,¹⁷ although what constitutes a matched system is not well understood. We investigated heterogeneous glycosidation of the silyl iodide generated from **3** with cholesterol, as shown in Table 1. Compound **3** (3 equiv) was treated with a stoichiometric amount of TMSI at 0 $\rm{^{\circ}C}$ in CH₂Cl₂. Upon completion of the reaction, the so formed glycosyl iodide solution was azeoptroped twice with benzene under reduced pressure and argon atmosphere. The crude yellowish oil was dissolved in CH_2Cl_2 and cannulated into a solution of cholesterol (1 equiv), 4 Å molecular sieves, and Ag_2CO_3 (2 equiv per donor) in CH_2Cl_2 for 4 days (entry 1). The solvent was evaporated, and the residue was subjected to hydrolysis using acidic resin in methanol to give the final products. The reaction furnished an α/β mixture (1:1) of cholesteryl glycosides **7**/**8** (49%) as judged by NMR as well as isolation of the two isomers by per-*O*-acetylation and chromatographic separation; 49% cholesterol was also recovered. To speed up the reaction, it was conducted at toluene reflux temperature overnight. This remarkably improved the α/β selectivity in favor of the desired β -isomer 8^{18} (entry 2, $\alpha/\beta = 1/6$, 55%). Changing the stoichiometry of donor/ acceptor to 1:1 and reversing it to 1:3 had little impact on the outcome of the reaction (entries $3-5$). Hoping to achieve complete selectivity, the reaction was conducted in CH_2Cl_2 using acetonitrile as a cosolvent (entry 6). However, to our surprise, the reaction gave a mixture of **7** and **8** favoring unwanted **7** ($\alpha/\beta = 1.6/1, 35\%$). Finally, we repeated the reaction in toluene at reflux temperature with slow cannulation of the donor (entry 7). This reaction gave the β -isomer as the major product ($\alpha/\beta = 1/9$ from ¹H NMR) in 56% overall yields. In all the reactions, cholesterol was recovered, which could be chemically

separated from the polar product by washing with a hexane and toluene mixture (1/1). The mixture of isomers could be separated by very careful silica gel column chromatographic separation using 5% MeOH in CH_2Cl_2 as eluent or alternatively by carrying out per-*O*-acetylation separation and deacetylation.

 α

With the requisite cholesteryl glycoside **8** in hand, we proceeded further to test regioselective palmitoylation using DCC as a coupling agent (Scheme 3). The best results were

obtained using a CH_2Cl_2 /pyridine solvent combination (1:1). Compound **8** was dissolved in pyridine and a solution of DCC, cat. DMAP, and palmitic acid in CH₂Cl₂ was slowly cannulated at 0 °C and stirred for 2 days at rt. The reaction cleanly afforded BbGL1 **1** in 43% yield along with the recovery of **8** to the extent of 39%. The results are comparable with the reported enzymatic reaction (palmitic acid vinyl ester, THF, Novozyme, 40 °C, 4 days, 38%, SM recovered 55%).⁹ The NMR data corroborated well with those reported in the literature.²

In conclusion, a chemical synthesis of immunogenic glycolipid BbGL1 was achieved in two steps starting from known

^{(17) (}a) Paulsen, H.; Paal, M.; Hadamczyk, D.; Steiger, K-M. *Carbohydr. Res.* **1984**, *131*, C1–C5. (b) Paulsen, H.; Paal, M. *Carbohydr. Res.* **1985**, *137*, 39–62. (c) Lichtenthaler, F. W.; Ko¨hler, B. *Carbohydr. Res.* **1994**, *258*, 77–85.

⁽¹⁸⁾ Iga, D. P.; Iga, S.; Schmidt, R. R.; Buzas, M.-C. *Carbohydr. Res.* **2005**, *340*, 2052–2054.

per-*O*-TMS galactose in 21% overall yield. The β -selectivity in the key glycosylation was achieved without the participation of the neighboring group or solvent. The synthesis of other significant β -linked glycolipids using the above established methodology and biological evaluation of BbGL1 are currently underway.

Acknowledgment. This work was supported by NSF CHE-0210807, NSF CRIF program (CHE-9808183), and NSF Grant OSTI 97-24412, and NIH Grant RR11973 provided funding for the NMR spectrometers used for this project.

Note Added after ASAP Publication. A description of and reference to a prior synthesis of BbGL1 was not included in the version published ASAP September 18, 2008. References 3 and 9 and extensive text changes were added to the revised version published ASAP October 8, 2008.

Supporting Information Available: General experimental details, experimental data, and ¹H NMR and ¹³C NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801780C